
Coding & Refactoring and Design Patterns

Dr. Mohammad Ahmad

Lecture 11

The Open-Closed Principle

Software entities should be open for extension
but closed for modifications.
 Design classes and packages so their

functionality can be extended without
modifying the source code

8.2

Good Signs of OO Thinking

 Short methods
 Simple method logic

 Few instance variables

 Clear object responsibilities
 State the purpose of the class in one sentence
 No super-intelligent objects
 No manager objects

8.3

Some Principles

 The Dependency Inversion Principle
 Depend on abstractions, not concrete implementations

• Write to an interface, not a class

 The Interface Segregation Principle
 Many small interfaces are better than one “fat” one

 The Acyclic Dependencies Principle
 Dependencies between package must not form cycles.

• Break cycles by forming new packages

8.4

Packages, Modules and other

 The Common Closure Principle
 Classes that change together, belong together

• Classes within a released component should share common
closure. That is, if one needs to be changed, they all are likely to
need to be changed.

 The Common Reuse Principle
 Classes that aren’t reused together don’t belong together

• The classes in a package are reused together. If you reuse one of
the classes in a package, you reuse them all.

8.5

What is Refactoring?

The process of changing a software system in
such a way that it does not alter the external
behavior of the code, yet improves its internal
structure.

 Fowler, et al., Refactoring, 1999.

8.6

Typical Refactorings

Class Refactorings Method Refactorings Attribute
Refactorings

add (sub)class to
hierarchy

add method to class add variable to class

rename class rename method rename variable
remove class remove method remove variable

push method down push variable down
push method up pull variable up
add parameter to method create accessors
move method to
component

abstract variable

extract code in new
method

8.7

Why Refactor?

“ Grow, don’t build software”
 Fred Brooks

 The reality:
 Extremely difficult to get the design “right” the first time
 Hard to fully understand the problem domain
 Hard to understand user requirements, even if the user does!
 Hard to know how the system will evolve in five years
 Original design is often inadequate
 System becomes brittle over time, and more difficult to change

 Refactoring helps you to
 Manipulate code in a safe environment (behavior preserving)
 Recreate a situation where evolution is possible
 Understand existing code

8.8

Rename Method — manual steps

 Do it yourself approach:
 Check that no method with the new name already exists in any

subclass or superclass.
 Browse all the implementers (method definitions)
 Browse all the senders (method invocations)
 Edit and rename all implementers
 Edit and rename all senders
 Remove all implementers
 Test

 Automated refactoring is better !

8.9

Rename Method

 Rename Method (method, new name)
 Preconditions

 No method with the new name already exists in any subclass or
superclass.

 No methods with same signature as method outside the
inheritance hierarchy of method

 PostConditions
 method has new name
 relevant methods in the inheritance hierarchy have new name
 invocations of changed method are updated to new name

 Other Considerations
 Typed/Dynamically Typed Languages => Scope of the renaming

8.10

The Law of Demeter

 “ Do not talk to strangers”
 You should only send messages to:

• an argument passed to you
• an object you create
• self, super
• your class

 Don’t send messages to objects returned from other
message sends

8.11

Code Smells

“ If it stinks, change it”
 Grandma Beck

 Duplicated Code
• Missing inheritance or delegation

 Long Method
• Inadequate decomposition

 Large Class / God Class
—Too many responsibilities

 Long Parameter List
—Object is missing

 Type Tests
—Missing polymorphism

 Shotgun Surgery
—Small changes affect too many objects

8.12

Code Smells

 Feature Envy
• Method needing too much information from another object

 Data Clumps
• Data always used together (x,y -> point)

 Parallel Inheritance Hierarchies
• Changes in one hierarchy require change in another hierarchy

 Lazy Class
• Does too little

 Middle Man
• Class with too many delegating methods

 Temporary Field
• Attributes only used partially under certain circumstances

 Data Classes
• Only accessors

8.13

Curing Long Methods

 Long methods
 Decompose into smaller methods
 Self sends should read like a script
 Comments are good delimiters
 A method is the smallest unit of overriding

8.14

self setUp; run; tearDown.

Curing Duplicated Code

 In the same class
 Extract Method

 Between two sibling subclasses
 Extract Method
 Push identical methods up to common superclass
 Form Template Method

 Between unrelated class
 Create common superclass
 Move to Component
 Extract Component (e.g., Strategy)

8.15

Curing God Class

 God Class
 Incrementally redistribute responsibilities to existing (or

extracted) collaborating classes
 Find logical sub-components

• Set of related working methods/instance variables
 Move methods and instance variables into components
 Extract component
 Extract Subclass

• If not using all the instance variables

8.16

Curing Type Tests

Missing Polymorphism
 Tell, don’t ask!
 Shift case bodies to (new) methods of object being tested
 Self type checks:

• Introduce hook methods and new subclasses
 Client type checks

• Introduce “tell” method into client hierarchy
 Possibly introduce State / Strategy or Null Object Design

Patterns

8.17

Design patterns

 A design pattern is a way of reusing abstract knowledge
about a problem and its solution.

 A pattern is a description of the problem and the essence
of its solution.

 It should be sufficiently abstract to be reused in different
settings.

 Pattern descriptions usually make use of object-oriented
characteristics such as inheritance and polymorphism.

18

Pattern elements

 Name
 A meaningful pattern identifier.

 Problem description.

 Solution description.
 Not a concrete design but a template for a design solution that

can be instantiated in different ways.

 Consequences
 The results and trade-offs of applying the pattern.

19

Design Patterns

 Design Patterns document recurrent solutions to design
problems
 They have names

• Composite, Visitor, Observer...
 They are not components!
 Design Patterns entail tradeoffs
 Will be implemented in different ways in different contexts

8.20

Why Design Patterns?

 Smart
 Elegant solutions that a novice would not think of

 Generic
 Independent of specific system type, language

Well-proven
 Successfully tested in several systems

 Simple
 Combine them for more complex solutions

8.21

Alert!!! Patterns are invading!

 Design Patterns are not “good” just because they are
patterns
 It is just as important to understand when not to use a Design

Pattern
 Every Design Pattern has tradeoffs
 Most Design Patterns will make your design more complicated

• More classes, more indirections, more messages
 Don’t use Design Patterns unless you really need them!

8.22

About Pattern Implementation

 Do not confuse structure and intent!
 Design Patterns document a possible implementation

• Not a definitive one
 Design Patterns are about intent and tradeoffs

8.23

Common Design Patterns

Pattern Intent

Adapter Convert the interface of a class into another
interface clients expect.

Proxy Provide a surrogate or placeholder for
another object to control access to it.

Composite
Compose objects into part-whole hierarchies
so that clients can treat individual objects and
compositions uniformly.

Template Method
Define the skeleton of an algorithm in an
operation, deferring some steps so they can
be redefined by subclasses.

8.24

The Singleton Pattern

Intent:
 Ensure that a class has only one instance, and provide a

global point of access to it

Problem:
We want a class with a unique instance.

Solution:
 Give the class the responsibility to initialize and provide

access to the unique instance. Forbid creation of new
instances.

8.25

Singleton Structure

8.26

Implementation Issues

 Class variable
 One singleton for a complete hierarchy

 Class instance variable
 One singleton per class

8.27

Implementation Issues

 Singletons may be accessed via a global variable

 Global Variable vs. Class Method Access
 Global Variable Access is dangerous: if we reassign Notifier we

lose all references to the current window.
 Class Method Access is better because it provides a single

access point.

8.28

The Observer pattern

 Name
 Observer.

 Description
 Separates the display of object state from the object itself.

 Problem description
 Used when multiple displays of state are needed.

 Solution description
 See slide with UML description.

 Consequences
 Optimisations to enhance display performance are impractical.

29

The Observer pattern (1)

Pattern
name

Observer

Description Separates the display of the state of an object from the object itself and
allows alternative displays to be provided. When the object state
changes, all displays are automatically notified and updated to reflect the
change.

Problem
description

In many situations, you have to provide multiple displays of state
information, such as a graphical display and a tabular display. Not all of
these may be known when the information is specified. All alternative
presentations should support interaction and, when the state is changed,
all displays must be updated.
 This pattern may be used in all situations where more than one
display format for state information is required and where it is not
necessary for the object that maintains the state information to know
about the specific display formats used.

30

The Observer pattern (2)

Pattern name Observer

Solution
description

This involves two abstract objects, Subject and Observer, and two concrete
objects, ConcreteSubject and ConcreteObject, which inherit the attributes of the
related abstract objects. The abstract objects include general operations that are
applicable in all situations. The state to be displayed is maintained in
ConcreteSubject, which inherits operations from Subject allowing it to add and
remove Observers (each observer corresponds to a display) and to issue a
notification when the state has changed.

The ConcreteObserver maintains a copy of the state of ConcreteSubject and
implements the Update() interface of Observer that allows these copies to be kept
in step. The ConcreteObserver automatically displays the state and reflects
changes whenever the state is updated.

Consequences The subject only knows the abstract Observer and does not know details of the
concrete class. Therefore there is minimal coupling between these objects.
Because of this lack of knowledge, optimizations that enhance display
performance are impractical. Changes to the subject may cause a set of linked
updates to observers to be generated, some of which may not be necessary.

31

Multiple displays using the Observer pattern

32

A UML model of the Observer pattern

33

Design problems

 To use patterns in your design, you need to recognize
that any design problem you are facing may have an
associated pattern that can be applied.
 Tell several objects that the state of some other object has

changed (Observer pattern).
 Tidy up the interfaces to a number of related objects that have

often been developed incrementally (Façade pattern).
 Provide a standard way of accessing the elements in a

collection, irrespective of how that collection is implemented
(Iterator pattern).

 Allow for the possibility of extending the functionality of an
existing class at run-time (Decorator pattern).

34

Implementation issues

 Focus here is not on programming, although this is
obviously important, but on other implementation issues
that are often not covered in programming texts:
 Reuse Most modern software is constructed by reusing existing

components or systems. When you are developing software, you
should make as much use as possible of existing code.

 Configuration management During the development process,
you have to keep track of the many different versions of each
software component in a configuration management system.

 Host-target development Production software does not usually
execute on the same computer as the software development
environment. Rather, you develop it on one computer (the host
system) and execute it on a separate computer (the target
system).

35

Reuse

 From the 1960s to the 1990s, most new software was
developed from scratch, by writing all code in a high-
level programming language.
 The only significant reuse or software was the reuse of functions

and objects in programming language libraries.

 Costs and schedule pressure mean that this approach
became increasingly unviable, especially for commercial
and Internet-based systems.

 An approach to development based around the reuse of
existing software emerged and is now generally used for
business and scientific software.

36

Reuse levels

 The abstraction level
 At this level, you don’t reuse software directly but use knowledge

of successful abstractions in the design of your software.

 The object level
 At this level, you directly reuse objects from a library rather than

writing the code yourself.

 The component level
 Components are collections of objects and object classes that

you reuse in application systems.

 The system level
 At this level, you reuse entire application systems.

37

Reuse costs

 The costs of the time spent in looking for software to
reuse and assessing whether or not it meets your needs.

Where applicable, the costs of buying the reusable
software. For large off-the-shelf systems, these costs
can be very high.

 The costs of adapting and configuring the reusable
software components or systems to reflect the
requirements of the system that you are developing.

 The costs of integrating reusable software elements with
each other (if you are using software from different
sources) and with the new code that you have
developed.

38

Host-target development

Most software is developed on one computer (the host),
but runs on a separate machine (the target).

More generally, we can talk about a development
platform and an execution platform.
 A platform is more than just hardware.
 It includes the installed operating system plus other supporting

software such as a database management system or, for
development platforms, an interactive development environment.

 Development platform usually has different installed
software than execution platform; these platforms may
have different architectures.

39

Integrated development environments (IDEs)

 Software development tools are often grouped to create
an integrated development environment (IDE).

 An IDE is a set of software tools that supports different
aspects of software development, within some common
framework and user interface.

 IDEs are created to support development in a specific
programming language such as Java. The language IDE
may be developed specially, or may be an instantiation
of a general-purpose IDE, with specific language-support
tools.

40

Component/system deployment factors

 If a component is designed for a specific hardware architecture, or
relies on some other software system, it must obviously be deployed
on a platform that provides the required hardware and software
support.

 High availability systems may require components to be deployed
on more than one platform. This means that, in the event of platform
failure, an alternative implementation of the component is available.

 If there is a high level of communications traffic between
components, it usually makes sense to deploy them on the same
platform or on platforms that are physically close to one other. This
reduces the delay between the time a message is sent by one
component and received by another.

41

Open source development

 Open source development is an approach to software
development in which the source code of a software
system is published and volunteers are invited to
participate in the development process

 Its roots are in the Free Software Foundation
(www.fsf.org), which advocates that source code should
not be proprietary but rather should always be available
for users to examine and modify as they wish.

 Open source software extended this idea by using the
Internet to recruit a much larger population of volunteer
developers. Many of them are also users of the code.

42

Open source systems

 The best-known open source product is, of course, the
Linux operating system which is widely used as a server
system and, increasingly, as a desktop environment.

 Other important open source products are Java, the
Apache web server and the mySQL database
management system.

43

Open source issues

 Should the product that is being developed make use of
open source components?

 Should an open source approach be used for the
software’s development?

44

Open source business

More and more product companies are using an open
source approach to development.

 Their business model is not reliant on selling a software
product but on selling support for that product.

 They believe that involving the open source community
will allow software to be developed more cheaply, more
quickly and will create a community of users for the
software.

45

Key points

 When developing software, you should always consider the
possibility of reusing existing software, either as components,
services or complete systems.

 Configuration management is the process of managing changes to
an evolving software system. It is essential when a team of people
are cooperating to develop software.

 Most software development is host-target development. You use an
IDE on a host machine to develop the software, which is transferred
to a target machine for execution.

 Open source development involves making the source code of a
system publicly available. This means that many people can
propose changes and improvements to the software.

46

	Coding & Refactoring and Design Patterns�
	The Open-Closed Principle
	Good Signs of OO Thinking
	Some Principles
	Packages, Modules and other
	What is Refactoring?
	Typical Refactorings
	Why Refactor?
	Rename Method — manual steps
	Rename Method
	The Law of Demeter
	Code Smells
	Code Smells
	Curing Long Methods
	Curing Duplicated Code
	Curing God Class
	Curing Type Tests
	Design patterns
	Pattern elements
	Design Patterns
	Why Design Patterns?
	Alert!!! Patterns are invading!
	About Pattern Implementation
	Common Design Patterns
	The Singleton Pattern
	Singleton Structure
	Implementation Issues
	Implementation Issues
	The Observer pattern
	The Observer pattern (1)
	The Observer pattern (2)
	Multiple displays using the Observer pattern
	A UML model of the Observer pattern
	Design problems
	Implementation issues
	Reuse
	Reuse levels
	Reuse costs
	Host-target development
	Integrated development environments (IDEs)
	Component/system deployment factors
	Open source development
	Open source systems
	Open source issues
	Open source business
	Key points

